Tag Archive | pendidikan matematika

Ngalur-Ngidul Episode 1: Happy Birthday My Blog

Terdampar di negeri kincir angin sungguh bukan hal yang pernah aku bayangkan. Walaupun dari kecil saat belajar sejarah atau nonton film perjuangan, seingatku aku pernah ingin sekali merasakan berada di daratan Eropa, khususnya Belanda. Tapi sekali lagi itu hanyalah khayalan anak kecil (ga terasa sekarang saya sudah 24 tahun menikmati udara bersih gratis buatan Allah SWT, Alhamdulillah….). Walapun sempat beberapa kali mendapatkan de javu, tapi sejujurnya kukatakan bahwa, si anak kampung ini tak pernah berani berangan-angan akan menikmati kuliah di luar negeri. Karena saya sadar betul siapalah si anak kampung ini, bukan hanya faktor keterbatasan ekonomi orangtua (alhamdulillah Allah menganugerahi orangtua yang sangat bertanggung jawab pada kami anak-anaknya, biarpun hujan, petir, dingin, siang maupun malam, mama dan papa tetap semangat berangkat bekerja dipayungi baju hujan ala kadarnya), tapi juga karena keterbatasan kemampuanku, karena memang aku bukan anak dengan kecerdasan tinggi. Baca lebih lanjut

Iklan

Addition of Positive and Negative Integers

For my last project in  this master program, I would like to design a learning activity about addition of positive and negative integers. I concern on  this problem because based on several interviews that I have done right exactly before leaving Indonesia, some teachers stated that their students faced serious problem with it. Why does it happen? and  how will my design would be? Well, this post will be my first series of development that would be happen during the study for my thesis. Check this out.

Why this topic is interesting for me?! Baca lebih lanjut

What should we do if our students cannot reveal their ideas in to a model

Model is a tool used for mathematician to reveal their ideas and thinking, and also to help them as tools to solve questions or puzzle. In Realistic Mathematics Education (RME), we know  well about the using of context and model. There are two different used of model in RME, model of situation and model for students’ thinking. In model of situation, students try to describe what they find in the context given, just exactly similar with the problem found. Usually, students tend to draw the situation in their paper. In the other hand, model for the picture are becoming more abstract. It is followed by their understanding more toward the problem. Students make a drawing not exactly the real situation but more close to the abstract calculation. I would like to give you an example; Corry just celebrated her 8th birthday. She plans to give  5 heart stickers to her best friends, for which each 5 stickers will be put on an envelope. Now, she is struggling to know,  how many heart stickers that she should buy if she had 20 heart stickers.  For more clear information, I would like to invite you to this following picture: Baca lebih lanjut

“Mathematics” or “Mathematizing”

Wah, lama ga update blog ni. Minggu ini, kami mahasiswa IMPoME Utrecht 2012 sedang disibukkan dengan sederetan aktivitas perkuliahan yang melelahkan ditemani sederetan kisah sedih, forum diskusi yang memanas dan berimbas di facebook, pengalaman pertama kali bersepeda di Belanda, tugas yang menumpuk, hingga hal-hal menggelikan yang selalu saja ditanggapi dengan tawa. Masih ditemani oleh dinginnya udara musim dingin, saya mencoba berbagi beberapa tasks yang saya telah kerjakan di mata kuliah Introduction in Realistic Mathematics Education (RME) yang diasuh oleh Mieke Abels ditemani oleh Martin Dolk.

Sedikit deskripsi tentang perkuliahan ini, mata kuliah ini seharusnya diasuh oleh Jaap De Hertog, seorang ahli RME. Nah, dikarenakan Jaap sedang mengalami proses penyembuhan pasca operasi kanker, oleh karena itu Mieke lah yang mengisi kekosongan itu. Semoga cepat sembuh ya Jaap, we miss you. Pada pertemuan pertama kita mempelajari beberapa video hasil riset yang terdapat di TIMSSVideo, kemudian dilanjutkkan dengan memganalisis dan mencoba membuat “Didactical Triangular” dari video-video tersebut. Selanjutnya, diakhir pembelajaran, kita diminta uuntuk membaca sebuah literatur yaitu chapter 1 dari buku Young Mathematician At Work (2001) karya C.T. Fosnot & M.L.A.M. Dolk. Sebagai evaluasi dari kegiatan membaca ini, kita diminta untuk membuat list kata-kata, kalimat, penting, dan summary nya. Berikut hasil resume saya. Baca lebih lanjut

Al-Kashi

Ghiyath al-Din Jamshid Mas’ud al-Kashani or Al-Kashi who was born in 1380 in Khasan and died in 22 June 1429 at Samarkand is an astronomer and one of the best mathematician in Islam. He spent her life in Mathematics and Astronomy

Details of Jamshid al-Kashi‘s life and works are better known than many others from this period although details of his life are sketchy. One of the reasons we is that he dated many of his works with the exact date on which they were completed, another reason is that a number of letters which he wrote to his father have survived and give fascinating information.

Al-Kashi was born in Kashan which lies in a desert at the eastern foot of the Central Iranian Range. At the time that al-Kashi was growing up Timur (often known as Tamburlaine) was conquering large regions. He had proclaimed himself sovereign and restorer of the Mongol empire at Samarkand in 1370 and, in 1383, Timur began his conquests in Persia with the capture of Herat. Timur died in 1405 and his empire was divided between his two sons, one of whom was Shah Rokh.

While Timur was undertaking his military campaigns, conditions were very difficult with widespread poverty. al-Kashi lived in poverty, like so many others at this time, and devoted himself to astronomy and mathematics while moving from town to town. Conditions improved markedly when Shah Rokh took over after his father’s death. He brought economic prosperity to the region and strongly supported artistic and intellectual life. With the changing atmosphere, al-Kashi’s life also improved markedly. The first event in al-Kashi’s life which we can date accurately is his observation of an eclipse of the moon which he made in Kashan on 2 June 1406. Baca lebih lanjut

Cara Praktis Mengajar Bangun Ruang Untuk Siswa SD

Bagi sebagian siswa bahkan hingga mahasiswa, geometri merupakan salah satu hal yang ditakuti. Hal ini, didukung oleh rendahnya tingkat kemampuan imajinasi siswa. Sebagian guru juga mengeluhkan  seringnya terjadi kekeliruan siswa dalam mengingat bagian-bagian dari suatu bangun ruang, seperti sisi, titik sudut dan rusuk.

Realistic Mathematics Education (RME) atau di Negara kita lebih akrab dikenal dengan sebutan Pendidikan Matematika Realistik  Indonesia (PMRI) menawarkan sebuah solusi unik yang lebih muda diingatkan dan diingat oleh siswa. Cukup dengan bantuan tusuk gigi dan permen kenyal, maka semua akan terasa lebih gampang. Bagaimana bisa? Baca lebih lanjut