Arsip

Exploring the Graph of Quadratic Function

As a final project of  Design of Science Education and Communication course, all students, including my partner Sylvana and I have to design a learning activity. There 3  documents that we design;

  1. Underpinning Design
  2. Students’ Worksheet and Exercise
  3. Teaching Guide and Rubric

Underpinning Design

In this document we will describe our design about the “Exploring the Graph of a Quadratic Function”, for which the target group is students grade X in St Albertus Senior High School (14 to 15 years old), in Indonesia. This design is mainly intended to help students in drawing the graph of a quadratic function and let the students experience drawing the graph of a quadratic function to be more meaningful. The more detailed information about target group will be described in the target group part. In this design, we set students to work with a software namely Graphmatica 2.0. This software is used to draw any function. Baca lebih lanjut

Iklan

Interval Arithmetics and Interval Newton Method

Interval Arithmetics

Interval arithmetic, interval mathematics, interval analysis, or interval computation, is a method developed by mathematicians since the 1950s and 1960s as an approach to putting bounds on rounding errors and measurement errors in mathematical computation and thus developing numerical methods that yield reliable results. Very simply put, it represents each value as a range of possibilities. For example, instead of estimating the height of someone using standard arithmetic as 2.0 meters, using interval arithmetic we might be certain that that person is somewhere between 1.97 and 2.03 meters.

Whereas classical arithmetic defines operations on individual numbers, interval arithmetic defines a set of operations on intervals:

T · S = { x | there is some y in T, and some z in S, such that x = y · z }.

The basic operations of interval arithmetic are, for two intervals [a, b] and [c, d] that are subsets of the real line (-∞, ∞), Baca lebih lanjut

Sang Penemu 23 Kromosom dari Indonesia

human-chromosom

Kromosom Manusia

Siapa sangka seorang ilmuwan dari Indonesia ternyata berperan penting dalam perkembangan bioteknologi khususnya genetika. Dia bersama koleganyalah yang menemukan dan memastikan bahwa kromosom manusia berjumlah 23 pasang, padahal sebelumnya para ilmuwan meyakini bahwa jumlah kromosom manusia adalah 24. Nah lho!

Baca lebih lanjut

Kuadrat Ajaib

Logika deduksi merupakan cara berpikir berasal dari sifat umum menuju sifat-sifat yang lebih khusus, sifat umum biasanya berupa teori atau hukum. Pemahaman asosiasi nilai tempat bagi siswa yang paling mudah dan berguna adalah menggunakan bantuan notasi pagar.

Notasi pagar Metris |,||,… atau |1,|2 ,… : ”kotak” yang berisi tepat 1,2,… angka,

a. bila lebih sisanya dipindah ke “kotak” sebelah kiri & dijumlahkan,

b. bila kurang tambahkan nol dalam “kotak” tsb tanpa mengubah nilai.

Portal Kuadrat Metris: ab^2 = a^2|2×a×b|b^2

13^2 = 1^2|2×1×3|3^2 = 1|6|9 = 169

42^2 = 4^2|2×4×2|2^2 = 16|16|4 = 17|6|4 = 1764

57^2 = 5^2|2×5×7|7^2 = 25|70|49 = 32|4|9 = 3249

Latihan: 18^2 = ?, 39^2 = ?, 74^2 = ?

Diambil dari buku : Pangkat Ajaib

———————————————————————————

Kunci Latihan: 324, 1521, 5476.

History of Geometry

From Wikipedia, the free encyclopedia

Table of Geometry Cyclopaedia

Geometry (Ancient Greek: γεωμετρία; geo- “earth”, -metria “measurement”) is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. Geometry is one of the oldest mathematical sciences. Initially a body of practical knowledge concerning lengths, areas, and volumes, in the 3rd century BC geometry was put into an axiomatic form by Euclid, whose treatment—Euclidean geometry—set a standard for many centuries to follow.[1] Archimedes developed ingenious techniques for calculating areas and volumes, in many ways anticipating modern integral calculus. The field of astronomy, especially mapping the positions of the stars and planets on the celestial sphere and describing the relationship between movements of celestial bodies, served as an important source of geometric problems during the next one and a half millennia. A mathematician who works in the field of geometry is called a geometer. Baca lebih lanjut

Pahlawan-Pahlawan Matematika yang Terlupakan

SAAT ini ilmu pengetahuan, khususnya matematika, berkiblat ke negeri Barat (Eropa dan Amerika). Kita hampir tidak pernah mendengar ahli matematika yang berasal dari negeri Timur (Arab Muslim, India, Cina). Yang paling populer kita dengar sebagai matematikawan Arab Muslim yang mempunyai kontribusi terhadap perkembangan matematika adalah Al-Khawarizmi, dikenal sebagai bapak Aljabar, memperkenalkan bilangan nol (0), dan penerjemah karya-karya Yunani kuno.

Apakah benar hanya itu kontribusi negeri-negeri timur (khususnya umat Islam) terhadap perkembangan matematika? Baca lebih lanjut