Apa itu Analisis Numerik?

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
 Tablet lempung Babilonia YBC 7289 (c. 1800–1600 BCE) [1] dengan anotasi (gambar oleh Bill Casselman)

Analisis numerik adalah studi algoritma untuk memecahkan masalah dalam matematika kontinu (sebagaimana dibedakan dengan matematika diskret)

Salah satu tulisan matematika terdini adalah tablet Babilonia YBC 7289, yang memberikan hampiran numerik seksagesimal dari \sqrt{2}, panjang diagonal dari persegi satuan.[1]

Kemampuan untuk dapat menghitung sisi segitiga (dan berarti mampu menghitung akar kuadrat) sangatlah penting, misalnya, dalam pertukangan kayu dan konstruksi.[2]

Analisis numerik melanjutkan tradisi panjang perhitungan praktis matematika ini. Seperti hampiran orang Babilonia terhadap \sqrt{2}, analisis numerik modern tidak mencari jawaban eksak, karena jawaban eksak dalam prakteknya tidak mungkin diperoleh. Sebagai gantinya, kebanyakan analisis numerik memperhatikan bagaimana memperoleh pemecahan hampiran, dalam batas galat yang beralasan.

Analisis numerik secara alami diterapkan di semua bidang rekayasa dan ilmu-ilmu fisis, namun pada abad ke-21, ilmu-ilmu hayati dan seni mulai mengadopsi unsur-unsur komputasi ilmiah. Persamaan diferensial biasa muncul dalam pergerakan benda langit (planet, bintang dan galaksi. Optimisasi muncul dalam pengelolaan portofolio. Aljabar linear numerik sangat penting dalam psikologi kuantitatif. Persamaan diferensial stokastik dan rantai Markov penting dalam mensimulasikan sel hidup dalam kedokteran dan biologi

Sebelum munculnya komputer modern metode numerik kerap kali tergantung pada interpolasi menggunakan pada tabel besar yang dicetak. Sejak pertengahan abad ke-20, sebagai gantinya, komputer menghitung fungsi yang diperlukan. Namun algoritma interpolasi mungkin masih digunakan sebagai bagian dari peranti lunak untuk memecahkan persamaan diferensial.

Pengenalan umum

Tujuan keseluruhan bidang analisis numeris adalah perancangan dan analisis teknik untuk mendapatkan solusi hampiran yang akurat terhadap masalah-masalah yang sukar. Contoh masalah-masalah tersebut akan dipaparkan di bawah.

  • Metode numeris lanjut sangat penting dalam membuat prakiraan cuaca numeris yang layak
  • Perhitungan trajektori wahana antariksa mensyaratkan pemecahan numeris yang akurat dari sistem persamaan diferensial biasa.
  • Perusahaan otomotif dapat meningkatkan keamanan kendaraan dengan menggunakan simulasi tabrakan kendaraan. Simulasi seperti ini pada dasarnya terdiri dari pemecahan persamaan diferensial parsial secara numeris.
  • Lembaga dana investasi pribadi menggunakan alat-alat dari seluruh bidang analisis numeris untuk menghitung nilai saham dan derivatif yang lebih tepat daripada peserta pasar lainnya
  • Maskapai penerbangan menggunakan algoritma optimisasi canggih untuk menentukan harga tiket, pesawat terbang dan penugasan awak, serta keperluan bahan bakar. Bidang ini juga dinamakan riset operasi
  • Perusahaan asuransi menggunakan program numeris untuk analisis aktuaria.

Sejarah

Bidang analisis numerik sudah sudah dikembangkan berabad-abad sebelum penemuan komputer modern. Interpolasi linear sudah digunakan lebih dari 2000 tahun yang lalu. Banyak matematikawan besar dari masa lalu disibukkan oleh analisis numerik, seperti yang terlihat jelas dari nama algoritma penting seperti metode Newton, interpolasi polinomial Lagrange, eliminasi Gauss, atau metode Euler.

Buku-buku besar berisi rumus dan tabel data seperti interpolasi titik dan koefisien fungsi diciptakan untuk memudahkan perhitungan tangan. Dengan menggunakan tabel ini (seringkali menampilkan perhitungan sampai 16 angka desimal atau lebih untuk beberapa fungsi), kita bisa melihat nilai-nilai untuk diisikan ke dalam rumus yang diberikan dan mencapai perkiraan numeris sangat baik untuk beberapa fungsi. Karya utama dalam bidang ini adalah penerbitan NIST yang disunting oleh Abramovich dan Stegun, sebuah buku setebal 1000 halaman lebih. Buku ini berisi banyak sekali rumus yang umum digunakan dan fungsi dan nilai-nilainya di banyak titik. Nilai f-nilai fungsi tersebut tidak lagi terlalu berguna ketika komputer tersedia, namun senarai rumus masih mungkin sangat berguna.

Kalkulator mekanik juga dikembangkan sebagai alat untuk perhitungan tangan. Kalkulator ini berevolusi menjadi komputer elektronik pada tahun 1940. Kemudian ditemukan bahwa komputer juga berguna untuk tujuan administratif. Tetapi penemuan komputer juga mempengaruhi bidang analisis numerik, karena memungkinkan dilakukannya perhitungan yang lebih panjang dan rumit.

Metode langsung dan iteratif

Metode langsung menghitung pemecahan suatu masalah dalam jumlah langkah terhingga. Metode ini akan memberikan jawaban persis bila dilakukan dalam hitungan dengan ketepatan takhingga. Contohnya adalah eliminasi Gauss, metode pemfaktoran QR untuk memecahkan sistem persamaan linear, dan metode simpleks untuk pemrograman linear. Pada praktiknya, yang digunakan adalah perhitungan ketepatan hingga (titik kambang) dan hasilnya adalah hampiran terhadap pemecahan sebenarnya (dengan andaian tercapai kestabilan numeris).

Berbeda dengan metode langsung, metode iteratif tidak diharapkan akan berakhir dalam jumlah langkah terhingga. Dimulai dari tebakan awal, metode iteratif menghasilkan hampiran yang secara berturut-turut akan konvergen ke pemecahan eksak. Uji kekonvergenan dilakukan untuk memutuskan kapan pemecahan yang cukup akurat dapat dicapai. Bahkan dengan menggunakan aritmetika ketepatan takhingga sekali pun metode seperti ini secara umum tidak akan mencapai pemecahan dalam jumlah langkah terhingga. Contohnya termasuk metode Newton, metode bagi dua, dan iterasi Jacobi. Dalam aljabar komputasi matriks, metode iteratif biasanya diperlukan untuk masalah besar.

Dalam analisis numeris metode iteratif lebih jamak daripada metode langsung. Beberapa metode pada intinya adalah langsung, namun biasanya diterapkan seolah-olah bukan, seperti GMRES dan metode gradien sekawan. Untuk metode-metode ini jumlah langkah yang diperlukan untuk mencapai solusi eksak sangat besar sehingga hampiran dapat diterima seperti pada metode iteratif.

Diskretisasi

Masalah kontinu kadang-kadang mesti digantikan dengan masalah diskret yang solusinya diketahui menghampiri masalah kontinu. Proses seperti ini dinamakan diskretisasi. Sebagai contoh, solusi persamaan diferensial adalah sebuah fungsi. Fungsi ini mesti direpresentasikan oleh data dalam jumlah terhingga, misalnya oleh nilai-nilainya pada sejumlah terhingga titik dalam domainnya, meskipun domainnya adalah malaran.

Catatan kaki

  1. Hampiran akar dari 2 itu adalah empat angka seksagesimal, yaitu sekitar enam angka desimal: 1 + 24/60 + 51/602 + 10/603 = 1.41421296…
    Foto, ilustrasi dan deskripsi dari tablet akar (2) dari koleksi Babilonia Universitas Yale
  2. Otoritas kualifikasi Selandia Baru secara khusus menyebutkan kecekatan ini dalam dokumen 13004 versi 2, tertanggal 17 Oktober 2003 berjudul CARPENTRY THEORY: Demonstrate knowledge of setting out a building

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s